Hypertonic saline increases tight junction permeability in airway epithelium.

نویسندگان

  • M Högman
  • A C Mörk
  • G M Roomans
چکیده

Asthmatics are known to react to inhaled hyperosmolar solution. Therefore, the effect of hyperosmolar salt solutions on tight junctions of the airway epithelium was investigated by electron microscopy. Rat trachea was perfused with different concentrations of sodium chloride (NaCl) and then fixed from the luminal side with glutaraldehyde to which the electron dense tracer lanthanum chloride had been added. Lanthanum penetrated 3+/-1% of the tight junctions in trachea perfused with 295 mOsm Krebs-Ringer's buffer (KRB). Adding NaCl to the KRB (KRB-NaCl) increased osmolarity of the solution. After perfusion with 589 or 876 mOsm KRB-NaCl, lanthanum was observed in the lateral intercellular spaces in 50+/-11 and 57+/-6%, respectively. The effect of hyperosmolarity was reversible and only 6+/-1% of the tight junctions were penetrated after perfusion with 295 mOsm KRB solution following 589 mOsm KRB-NaCl perfusion. Adding mannitol to the KRB to an osmolarity of 589 mOsm only caused 5+/-1% of the tight junctions to open, even though osmotic effects were observed. Opening the tight junctions with hyperosmolar salt solutions may play a role in exercise-induced asthma. It may also open the prospect for increased penetration of inhaled drugs into the interstitium and the circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between the epithelial tight junction morphology of human extrapulmonary bronchi and rat trachea.

Animal models have been used to investigate the involvement of epithelial tight junctions in the pathogenesis of human airway disease. However, no previous study has compared the tight junction morphologies of human and animal species in order to relate findings in animal models to human disease. In the present study, we therefore undertook a comprehensive quantitative evaluation of tight junct...

متن کامل

Histamine alters E-cadherin cell adhesion to increase human airway epithelial permeability.

During the immediate response to an inhaled allergen, there is an increase in the paracellular permeability of the airway epithelium.1 Histamine is an important agonist released during the immediate response to inhaled allergen. We hypothesized that histamine would increase human airway epithelial paracellular permeability and that it would do this by interrupting E-cadherin-based cell adhesion...

متن کامل

Fluid transport by gallbladder epithelium.

The absorption of fluid by epithelial tissues is thought to be due to the existence of hypertonic regions within the epithelium. The magnitude of the required hypertonicity as well as its localization have been the subject of considerable experimental and theoretical effort. Model calculations demonstrated the need for knowledge of the water permeability of the membranes of epithelial cells for...

متن کامل

Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD

There is now convincing evidence that the airway epithelium drives the pathogenesis of COPD. A major aspect of this is the disease-related reduction in barrier function that is potentiated by dysregulation of tight junction (TJ) protein complexes. However, a significant number of studies using in vitro smoke exposure models have not observed alterations in barrier permeability. We have previous...

متن کامل

Hypertonic saline alters ion transport across the human airway epithelium.

Aerosolized hypertonic saline is currently being investigated as a new agent for the treatment of impaired mucociliary clearance which occurs in many respiratory diseases. Mannitol aerosols, in particular dry powder inhalers, have been proposed as an alternative treatment to saline, offering the same osmotic load with other benefits. However, the effects of these hypertonic aerosols on airway e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2002